intel

Intel® Management Mode Firmware
Runtime Update - OS Interface

August 2021

Revision 1.00

NO LICENSE (EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE) TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

INTEL DISCLAIMS ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NONINFRINGEMENT, AS WELL AS ANY WARRANTY ARISING FROM COURSE OF PERFORMANCE,
COURSE OF DEALING, OR USAGE IN TRADE.

This document contains information on products, services and/or processes in development. All
information provided here is subject to change without notice. Contact your Intel representative to
obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata, which may cause
deviations from published specifications. Current characterized errata are available on request.

You may not use or facilitate the use of this document in connection with any infringement or other
legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive,
royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed
herein.

Copies of documents that have an order number and are referenced in this document may be obtained
by calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm.

Intel, the Intel logo, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others

Copyright® 2021, Intel Corporation. All Rights Reserved.

Copyright® 2020-2021 Intel Corporation. All rights reserved

http://www.intel.com/design/literature.htm

Contents

1 Introduction 1
1.1 =T Tad €= 0 10 o T 1P PP 1

1.2 L= = P 1

T.2.T MM COAE INJECHION wooutreueeneerreerereeesersessesses s sses s sesssssssssssesssssssssssssssesssssssssssesssssssssssssssesssesssesns 2

T1.2.2 MM DIriVEI UPAALE ottt ssssessesesssss s ssssessssssssssssssssssssssesssssssssssssssssssesssassssssssens 2

T.2.3 MM TOLEMEIIY ettt s bbb bbb 2

1.3 LI 01T To o =4O 2

1.4 RE] (=T] =P 2

2 ACPI DSM Interface 3
2.1 ACPIINTErTACE OVEIVIEW....euieeieeereessssssssssss s sss st ssss s st s s s s s sess bbb sess s sesssesssens 3

2.2 MM RUNTIME UPAATE ...ouieeeeeeeeneeserseesessessesssessesssssssssssssssssesssesssesssssssssssssssssssesssssssesssesssssssesssesssesssessesas 5

202 TR 0 151 1 N 1= 4 o o OO 5

2.2.2 RetUrn STatus ValUES...... s 5

2.2.3 Function Index 1 — Query Update Capability......creensereneenseseesesseesesseessessessesssesnes 6

2.2.4 Function Index 2 — Query Communication Buffer INfoc.cceineenneeneenseeseenseesneenns 8

2.2.5 Function Index 3 — Start MM RuNtime Update..........cuemeeneeeemseeseeseesenssesssesssessessseenns 8

2.3 R =T =T 0 =) PP 10

220 T I 0 151 1 N 1= d o o PP 10

2.3.2 RetUIN STAtUS VAlUES.....c e 11

2.3.3 Function INndexX T — Set MM LOE LEVEL ... ssssssesans 11

2.3.4 Function Index 2 — Get MM LOG LEVEL... e ssssssesssssssssesssssssens 12

2.3.5 Function Index 3 — Get MM LOg Data INfO...ccoreenrereereeeereeseeseseeseseesessessessessessesens 12

A Appendix (OS Agent Sample Algorithm) 15
A1 Telemetry Buffer Data RETMHEVAL ... seessesssesssssssesssssssssssesssessssssssssssssssssssssssssseens 15

A2 Delta Telemetry Data REtIEVAL ... sssssessssssnsses s sssssesssssssssesssssssssesssssssanes 15

Copyright© 2020-2021 Intel Corporation. All rights reserved iii

Figures

Figure 1-1. MM Runtime Update System
Figure 2-1. MM Runtime Update Flow

Tables
BT 1= g TR =T g 411 o] (o =Y DT 2
Table 1-2. REfEreNCE DOCUMENTS ...ttt ss ettt s s e s s st sttt nans 2
Table 2-1. SMRU DeVice FUNCLION INAEX ..ot sesessssessssssssssssessenas 5
Table 2-2. RETUIN StatUuS ValUES.... sttt e tss sttt st seasssssssesssssssssesssssssssesnssnans 6
Table 2-3. Query Update Capability — Return Package ValUes....... o eneoneeneenseseeneenseeseessesessessseseanss 7

Table 2-4. Query Communication Buffer Info — Return Package Values 8
Table 2-5. Start MM Runtime Update - Input Package Values
Table 2-6. Code Inject — Return Package Values
Table 2-7. SMTS Device Function Index
Table 2-8. Set MM Log Level - Input Package Values
Table 2-9. Set MM Log Level — Return Package Values
Table 2-10. Get MM Log Level — Return Package Values
Table 2-11. Get MM Log Data Info - Input Package Values
Table 2-12. Get MM Log Data — Return Package Values

Revision History

':ﬁl"ri:é%? Description Date
1.00 o Initial release August 2021

Copyright© 2020-2021 Intel Corporation. All rights reserved iv

1 Introduction

1.1 Background

Certain compute systems require high service level agreements (SLAs) where fewer system
reboot firmware updates are required for deploying firmware changes to address bug fixes,
security updates, and to debug and root cause issues. Intel’s solution is called Intel” Seamless
Update. The management mode (MM), UEFI runtime services and ACPI services handle most of
the system runtime functions. Intel” processor architecture supports MM through System
Management Mode (SMM). Changing the MM code execution during runtime is called MM
Runtime Update (MRU).

1.2 Overview

The MM Runtime Update mechanism incorporates the following features:
e MM Code Injection
e MM Driver Update
e MM Telemetry

These features are designed to be invoked from OS through ACPI Device Specific Method
(DSM). The Figure 1-1 shows the high-level architecture of the MM runtime update
infrastructure.

Figure 1-1. MM Runtime Update System

OS Agent

ACPI OSPM and OS Specific Update Agent

ACPI Driver/AML Interpreter

SMRU Device SMTS Device . .
Seamless System Firmware Runtime Update

ACPI Tables OS Interface
E //

MM
Management Mode (MM)

Copyright® 2020-2021 Intel Corporation. All rights reserved

1.2.1 MM Code Injection

MM code injection feature provides a framework to deliver firmware image capsule to the MM
that is designed to run in MM context for the given platform. The code update infrastructure
allows delivering runtime firmware changes that are targeted for hardware and firmware state
modifications to allow security or performance enhancements.

1.2.2 MM Driver Update

MM driver update feature provides a framework to deliver firmware image capsules to the MM
that is designed to upgrade MM drivers. The driver update infrastructure allows delivering
runtime firmware changes that are targeted for firmware driver changes to allow security or
performance enhancements.

1.2.3 MM Telemetry

MM Telemetry feature provides a framework to retrieve log messages from MM for monitoring
and root cause of issues.

1.3 Terminology

Table 1-1. Terminology

Term Definition
ACPI Advanced Configuration and Power Interface
BIOS Basic Input/Output System
DSM Device Specific Method
MM Management Mode
(O Operating System
SLA Service Level Agreement
SMM System Management Mode
MRU MM Runtime Update
SMRU Seamless MM Runtime Update
SMTS Seamless MM Telemetry Service
UEFI Unified Extensible Firmware Interface
UuID Universally Unique Identifier

1.4 References

Table 1-2. Reference Documents

Reference Document Document Location

[UEFI] UEFI Specification https://uefi.org/specifications

Copyright® 2020-2021 Intel Corporation. All rights reserved

https://uefi.org/specifications

2 ACPI DSM Interface

2.1 ACPI Interface Overview

A new ACPI namespace device is defined in this specification to facilitate the OS-BIOS
communication of MM Runtime Update. Platforms that support MM Runtime Update must
follow this specification to:

e Produce ACPI SMRU Device (Section 2.1) and required _DSM Method (Section 2.2.17).

e Provide an MM Communication Buffer for OS to deliver the MM Runtime Update
Capsule Image to MM Runtime Update Handler.

e Provide MM Telemetry Service for OS to collect telemetry information during MM
Runtime Update process.

An OS agent shall use the ACPI device DSM method defined in this specification to interact with
platform BIOS to perform the MM Runtime Update. The MM Runtime Update workflow is shown
in Figure 2-1. MM Runtime Update Flow Figure 2-1.

Copyright© 2020-2021 Intel Corporation. All rights reserved 3

Figure 2-1. MM Runtime Update Flow

ACPI &
BIOS Reserved Region

0s

MM Runtime Update
MMI Handler
T

|
. I
System Init Flow I

l€———Produce ACPI Device with DSM Method———!
|

A Reserve MM Communication Buffer
| for update capsule image |

Reserve MM Communication Buffer
for telemetry data

|
|
I
f
Runtime Update Flow I

:—Enumerate ACPI device4>:

I) . A I
Query MM Runtime Update capability and revision info

|< ———————— Update Result:
|
Get MM telemetry log data I
| (DSM function) |
|<— — — — -Data Address, Size, Overflow Indicater— — — — -

| (DSM function) |
I ——MmI for update capability & revision info—>|
| S |
| | |
|<— —————— Capability and revision info- — — — — — 1 I
| | |
| Query capsule image MM Communication buffer info | |
(DSM function) > |
| | |
I :) . | I
l—Copy capsule image into MM Communication buffer—»l I
| | |
| (Optional) Set telemetry log level | |
(DSM function) |
I I MMitoset telemetry log level———pl
| Invoke MM Runtime Update | |
(DSM function) ’ |
I — MMl to invoke MM update capsule process—b'

Clean up internal log
region and start recording
1

Process capsule image
(Authentication & Execution)

End telemetry
log recording

Note: An OS agent may repeat the “Runtime Update Flow" to deliver multiple MM Runtime Update
capsule images to system firmware, or rollback a previous update in one power cycle.

Copyright® 2020-2021 Intel Corporation. All rights reserved

2.2

MM Runtime Update

In order to handle MM Runtime Update, the OS must first be able to detect and enumerate the
SMRU (Seamless MM Runtime Update) device. An SMRU device is represented by an ACPI
namespace device with a _HID or _CID object value of “INTC1080".

An SMTS Device must contain the _DSM method required to program the MM Runtime Update
as defined in Section 2.2.1.

Example:

Scope (_SB) {
Device (SMRU) {
Name (_HID, "INTC1080")
Name (_STR,..)

Method (_DSM, ...) {

}
}
}

2.2.1 _DSM Method

The _DSM method for an SMRU device is described in this section.
Input Parameters:

Arg0 - UUID (set to ECF9533B-4A3C-4E89-939E-C77112601C6D)
Arg1 — Revision ID (set to 1)

Arg?2 - Function Index

Table 2-1. SMRU Device Function Index

Function Index Description
0 Standard _DSM query function
1 Query Update Capability (see Section 2.2.3)
2 Query Communication Buffer Info (see Section 2.2.4)
3 Start MM Runtime Update (see Section 2.2.5)
All other value Reserved

Arg3 — A package containing parameters for the function specified by the UUID, Revision ID and
Function Index. The layout of the package for each command along with the corresponding
output is illustrated in the respective Function Index description sections.

2.2.2 Return Status Values

If Function Index is not zero, the output package in this DSM may contain a Status field. The
return status values are defined in next table.

Copyright® 2020-2021 Intel Corporation. All rights reserved

Table 2-2. Return Status Values

Field Name Description

Status 0 - Success

1 - Function Not Supported

2 - Invalid Input Parameters

3 - Hardware Error

4 — Retry Suggested

5 - Unknown Reason

6 - Function Specific Error (details in Extended Status field)
All other value - Reserved

Extended Status Function Specific

2.2.3 Function Index 1 - Query Update Capability

This function allows software to get the MM Runtime Update capability.
Function Input

None
Function Output

A package as described next.

Package {
Status /[Integer
Update Capability // Integer
MM Code Injection Image Type // Buffer
MM Firmware Version /[Integer
MM Code Injection Runtime Version // Integer
MM Driver Update Image Type // Buffer
MM Driver Update Runtime Version // Integer
MM Driver Update Runtime SVN // Integer
Platform ID // Buffer
OEMID // Buffer
OEM Information // Buffer
}

Copyright® 2020-2021 Intel Corporation. All rights reserved

Table 2-3. Query Update Capability — Return Package Values

Field Format Description
Status Integer Defined in Table 2-2
Update Capability Integer Multiple bits can be set to indicate the supported MM Runtime Update

features. A bit is set to one to indicate the feature is supported, zero means
not supported.

Bit 0 — MM Code Injection
Bit 1 - MM Driver Update
Others — Reserved and must be 0.

MM Code Injection
Image Type

Buffer (16 Bytes)

A buffer containing an image type GUID.

Platform supported capsule image type. The MM code injection capsule
image must have the same Update Image Type ID.

MM Firmware Version Integer Platform MM firmware version.
The supported firmware version value inside an MM Runtime Update
Capsule image must have same value as this field.

MM Code Injection Integer MM Code injection runtime version for anti-rollback.

Runtime Version

An injected code image must have equal or higher image version than this
value. This field is always initialized to O in the firmware boot.

This field is invalid and must be ignored if MM Code Injection is not
supported.

MM Driver Update
Image Type

Buffer (16 Bytes)

A buffer containing an image type GUID.

Platform supported MM Driver Update image type. The MM driver update
capsule image must have the same Update Image Type ID.

MM Driver Update Integer The version of the SMI Driver Update runtime code.

Runtime Version This field is invalid and must be ignored if MM Driver Update is not
supported.

MM Driver Update Integer The secure version number (SVN) of the SMI Driver Update Runtime code.

Runtime SVN

The MM Driver Update Runtime Version of new capsule must be no less
than the SVN in current BIOS.

This field is invalid and must be ignored if MM Driver Update is not
supported.

Platform ID

Buffer (16 Bytes)

A buffer containing a platform ID GUID.

This is a platform specific GUID to specify the platform what this capsule
image support. An MM driver update capsule image must have same
Platform ID.

OEM ID

Buffer (16 Bytes)

A buffer containing an OEM ID GUID.

This is a vendor specific GUID to specify the OEM ID. An MM driver update
capsule image must have a same OEM Header Type with this value.

OEM Information

Buffer

A buffer containing the vendor specific information.

This is a buffer object that contains the vendor specific data. OS shall check
the OEM ID to determine how to interpret this OEM information data.

Copyright© 2020-2021 Intel Corporation. All rights reserved 7

2.2.4 Function Index 2 - Query Communication Buffer Info
This function allows software to get the communication buffer information of MM Runtime
Update.
Function Input
None
Function Output

A package as described next.

Package {
Status /[Integer
Extended Status // Integer
Buffer Address Low // Integer
Buffer Address High /[Integer
Buffer Size /[Integer
}

Table 2-4. Query Communication Buffer Info — Return Package Values

Field Format Description

Status Integer Defined in Table 2-2

Extended Status Integer Implementation specific

Buffer Address Low Integer Low 32-bit physical address of the communication buffer to hold an MM

Runtime Update Package.
Note: This field is not applicable to OOB MM Update.

Buffer Address High Integer High 32-bit physical address of the communication buffer to hold an MM
Runtime Update Package.

Note: This field is not applicable to OOB MM Update.

Buffer Size Integer Maximum size in bytes of the communication buffer.

2.2.5 Function Index 3 - Start MM Runtime Update

This function instructs the firmware to process the MM Runtime Update Capsule image in
communication buffer.

Before invoking this function, an MM Runtime Update Capsule image must be placed in the
communication buffer specified by Section 2.2.4.

If there is something wrong in the MM Runtime Update, it may be rolled back to the last known
good version by issuing another call of this function, with a special capsule image or an older
version capsule image.

Copyright© 2020-2021 Intel Corporation. All rights reserved 8

Function Input

Package {
Action

// Integer

Table 2-5. Start MM Runtime Update - Input Package Values

Field

Format

Description

Action

Integer

Indicate what action is required to perform for the capsule
image:

and perform authentication.
1 — Activate a previous staged capsule image.

2 — Perform both stage and activation actions.

Function Output

A package as described next.

Package {
Status /[Integer
Extended Status /[Integer
Authentication Time Low // Integer
Authentication Time High // Integer
Execution Time Low // Integer
Execution Time High // Integer

Table 2-6. Code Inject — Return Package Values

Field Format Description

Status Integer Defined in Table 2-2

Extended Status Integer Implementation specific

Authentication Integer Low 32-bit value of image authentication time in nanosecond.

Time Low

Authentication Integer High 32-bit value of image authentication time in nanosecond.

Time High A value of zero in Authentication Time Low and Authentication
Time High means authentication time is not reported.

Execution Time Integer Low 32-bit value of image execution time in nanosecond.

Low

Execution Time Integer High 32-bit value of image execution time in nanosecond.

High A value of zero in Execution Time Low and Execution Time High
means execution time is not reported.

Note that this function only measures the cryptographic authentication and image execution
time of the MM runtime update image. The time of processor operating mode switching
(entering/exiting MM) and SMI handler dispatching is excluded.

Copyright® 2020-2021 Intel Corporation. All rights reserved

0 - Stage a capsule image from communication buffer into MM

2.3

MM Telemetry

The OS must be able to detect and enumerate the SMTS (Seamless MM Telemetry Service)
device to an SMTS device is represented by an ACPl namespace device witha _HID or _CID
object value of “INTC1081".

An SMTS Device must contain the _DSM method required to program the MM Runtime Update
as defined in_Section 2.3.1.

Example:

Scope (_SB) {
Device (SMTS) {
Name (_HID, "INTC1081")
Name (_STR,..)

Method (_DSM, ...) {

}
}
}

2.3.1 _DSM Method

The _DSM method for an SMTS device is described in this section.
Input Parameters:

Arg0 - UUID (set to 75191659-8178-4D9D-B88F-AC5E5E93E8BF)
Arg1 — Revision ID (set to 1)

Arg2 — Function Index

Table 2-7. SMTS Device Function Index

Function Index Description

0 Standard _DSM query function

1 Set MM Log Level (refer to_Section 2.3.3)

2 Get MM Log Level (refer to Section 2.3.4)

3 Get MM Log Data Info (refer to_Section 2.3.5)
All other value Reserved

Arg3 — A package containing parameters for the function specified by the UUID, Revision ID and
Function Index. The layout of the package for each command along with the corresponding
output is illustrated in the respective Function Index description sections.

Copyright© 2020-2021 Intel Corporation. All rights reserved 10

2.3.2 Return Status Values

Same status code values are used as Section 2.2.2.

2.3.3 Function Index 1 - Set MM Log Level

This function allows software to set MM log level in MM Telemetry Service.
Log Level Definition:

O — Error Message
1-Warning Message
2 — Informational Message
4 - Verbose (Detailed message)
Function Input
Package {
Log Level // Integer
}

Table 2-8. Set MM Log Level - Input Package Values

Field Format Description

Log Level Integer The MM telemetry log level to be set.

Any log message with level equal to or less than Log Level (that is, of
equal or higher priority) will be recorded by MM Telemetry Service. A log
message with levels greater than Log Level will be discarded.

Function Output

A package as described next.

Package {
Status // Integer
Extended Status /[Integer
}

Table 2-9. Set MM Log Level - Return Package Values

Field Format Description
Status Integer Defined in Table 2-2
Extended Status Integer Implementation specific
Log Level Integer Configured log level value in MM Telemetry Service.

Copyright© 2020-2021 Intel Corporation. All rights reserved 11

2.3.4 Function Index 2 - Get MM Log Level

This function allows software to get current MM log level from MM Telemetry Service.
Function Input

None

Function Output

A package as described next.

Package {
Status /] Integer
Extended Status // Integer
Log Level // Integer
}

Table 2-10. Get MM Log Level — Return Package Values

Field Format Description

Status Integer Defined in Table 2-2

Extended Status Integer Implementation specific

Log Level Integer Current log level in MM Telemetry Service.

2.3.5 Function Index 3 - Get MM Log Data Info

This function allows software to get MM Log Data from MM Telemetry Service. The function can
return MM Runtime Update execution log data or history log data, depends on the data type
value of the function input.

e Execution Log: MM execution log data generated since previous call of Start MM
Runtime Update process (Section 2.2.5). The log data format is implementation
specific like the BIOS serial log messages.

e History Information: MM Runtime update history information. The log data format is
implementation specific like the BIOS serial log messages, but these log messages
are not reset on MM Runtime Update process.

OS shall follow the Appendix A (OS Agent Sample Algorithm) described algorithm to retrieve
delta MM Log Data with this function.

MM Log Data is generated by MM Runtime update driver, SMI handler or other MM modules,
and consumed when this function is called. The detailed definition of the log entry format is out
of scope and covered by MM Runtime Update — Telemetry Specification.

Copyright© 2020-2021 Intel Corporation. All rights reserved 12

Function Input
DSM method Revision 1 doesn't support function input and always return Execution Log.
DSM method Revision 2 supports below function input:

Package {
Data Type // Integer
}

Table 2-11. Get MM Log Data Info - Input Package Values

Field Format Description

Data Type Integer The MM telemetry log data type to get.
0 - Execution Log.
1 - History Information.

Other value — Reserved.

Function Output

A package as described next.

Package {
Status // Integer
Extended Status // Integer
Maximum Data Chunk Size /[Integer
Data Chunk1 Address Low // Integer
Data Chunk1 Address High // Integer
Data Chunk1 Size // Integer
Data Chunk2 Address Low // Integer
Data Chunk2 Address High // Integer
Data Chunk2 Size // Integer
Rollover Count // Integer
Telemetry Service Reset Count // Integer

}

Copyright® 2020-2021 Intel Corporation. All rights reserved

Table 2-12. Get MM Log Data — Return Package Values

Reset Count

Field Format Description
Status Integer Defined in Table 2-2
Extended Status Integer Implementation specific
Maximum Data Integer Maximum supported size of data of all Data Chunks combined
Chunk Size
Data Chunk1 Integer Low 32-bit physical address of the telemetry data chunk1 starting
Address Low address.
Note: This field is not applicable to OOB MM Update.
Data Chunk1 Integer High 32-bit physical address of the telemetry data chunk1 starting
Address High address.
Note: This field is not applicable to OOB MM Update.
Data Chunk1 Size Integer Data size in bytes of the telemetry data chunk1 buffer.
Note: This field is not applicable to OOB MM Update.
Data Chunk2 Integer Low 32-bit physical address of the telemetry data chunk2 starting
Address Low address.
Note: This field is not applicable to OOB MM Update.
Data Chunk2 Integer High 32-bit physical address of the telemetry data chunk2 starting
Address High address.
Note: This field is not applicable to OOB MM Update.
Data Chunk2 Size Integer Data size in bytes of the telemetry data chunk2 buffer.
Note: This field is not applicable to OOB MM Update.
Rollover Count Integer Number of times MM telemetry data buffer is overwritten since telemetry
buffer reset.
Note: MM telemetry service uses a buffer to store telemetry data that has
maximum capacity limitation. If data being logged reaches the maximum
capacity, old telemetry data is overwritten by new one. This is called
overflow condition.
Telemetry Service Integer Number of times telemetry services resets that results in Rollover Count

and Data Chunk buffers are reset

Note: Data Chunk2 Address shall be equal to Data Chunk1 Address + Data Chunk1 Size.

Use of Data Chunk1 and Data Chunk?2 allows implementation flexibility for use of circular buffer
and reduce merging overhead for the BIOS.

Copyright® 2020-2021 Intel Corporation. All rights reserved

14

Appendix (OS Agent Sample Algorithm)

A1

A.2

This appendix provides sample algorithms for OS agent to retrieve MM Log Data.

Telemetry Buffer Data Retrieval

The following pseudo code outlines the OS agent algorithm for retrieving currently existing
data from MM telemetry service. If the telemetry buffer gets full, most recent log data will
overwrite old log data.

e Call ACPI DSM Get MM Log Data Info function

e Copy Data Chunk1 Size data starting from Data Chunk1 Address to OS owned
destination storage

e Append Data Chunk?2 Size data starting from Data Chunk2 Address to OS owned
destination storage

e If Rollover Count is non-zero, overflow condition is occurred
e Call Get MM Log Data Info function again

e If data changed between Get MM Log Data Info calls, SMI had occurred and new Log
Data was added during the processing. Repeat previous steps until data match

Delta Telemetry Data Retrieval

The following pseudo code outlines the OS agent algorithm for retrieving new MM Log Data
since previous data retrieval:

First time access after system boot or on Telemetry Service Reset:

1. Follow the steps outlines Section A.1

2. Save the Get MM Log Data Info return data as previous parameters
Subsequent access (either polling or invoked again):

1. Call ACPI DSM Get MM Log Data Info function to determine the delta from delta
starting parameters

2. If no parameter change
e no new data present

3. Elself Rollover Count == previous Rollover Count && Telemetry Service Reset
Count == previous Telemetry Service Reset Count

o Data Start Address = previous Data Chunk2 Address + previous Data Chunk?2
Size

o Data Size = Data Chunk2 Size - previous Data Chunk2 Size
e Copy data from Data Start Address of Data Size to destination storage

e No data loss, indicate as no overflow condition

Copyright© 2020-2021 Intel Corporation. All rights reserved 15

4. Else If Rollover Count == previous Rollover Count + 1 && Telemetry Service Reset
Count == previous Telemetry Service Reset Count

e If Data Chunk?2 Size <= previous Data Chunk2 Size (condition where new log data
pointer has not moved past old log data pointer)

o Data Start Address = previous Data Chunk2 Address + previous Data
Chunk?2 Size

o Data Size = Maximum Data Chunk Size — Data Start Address

o Copy data from Data Start Address of Data Size to destination storage

o Data Start Address = Data Chunk2 Address

o Data Size = Data Chunk2 Size

o Append data from Data Start Address of Data Size to destination storage
o No data loss, indicate as no overflow condition

e If Data Chunk?2 Size > previous Data Chunk?2 Size (condition where new log data
pointer has not moved past old log data pointer)

o Copy Data Chunk1 Size data starting from Data Chunk1 Address to
destination storage

o Append Data Chunk2 Size data starting from Data Chunk2 Address to
destination storage

o Data loss, indicate as overflow condition

5. Else If Rollover Count >= delta starting Rollover Count + 1 && Telemetry Service
Reset Count == delta starting Telemetry Service Reset Count

e Copy Data Chunk1 Size data starting from Data Chunk1 Address to destination
storage

e Append Data Chunk?2 Size data starting from Data Chunk2 Address to destination
storage

e Data loss, indicate as overflow condition

6. Else If Telemetry Service Reset Count != delta starting Telemetry Service Reset
Count

e Data may have lost between telemetry service reset

e Go to “First time access after system boot or on Telemetry Service Reset” flow to
start new delta log

7. Call ACPI DSM Get MM Log Data Info function again to check no data changed
from previous call

8. If any Data Chunk Address, Data Chunk Size, Rollover Count or Telemetry Service
Reset Count values changed between Get MM Log Data Info calls in step #1 and
#7, SMI occurred and new Log Data is added during the processing. Go to step #1
to repeat the previous steps until data matches, or exit after several retries.

9. Save step #7 Get MM Log Data Info return data as new previous parameters

Copyright© 2020-2021 Intel Corporation. All rights reserved 16

	1 Introduction
	1.1 Background
	1.2 Overview
	1.2.1 MM Code Injection
	1.2.2 MM Driver Update
	1.2.3 MM Telemetry

	1.3 Terminology
	1.4 References

	2 ACPI DSM Interface
	2.1 ACPI Interface Overview
	2.2 MM Runtime Update
	2.2.1 _DSM Method
	2.2.2 Return Status Values
	2.2.3 Function Index 1 – Query Update Capability
	2.2.4 Function Index 2 – Query Communication Buffer Info
	2.2.5 Function Index 3 – Start MM Runtime Update

	2.3 MM Telemetry
	2.3.1 _DSM Method
	2.3.2 Return Status Values
	2.3.3 Function Index 1 – Set MM Log Level
	2.3.4 Function Index 2 – Get MM Log Level
	2.3.5 Function Index 3 – Get MM Log Data Info

