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ABSTRACT
Tiny hidden spy cameras concealed in sensitive locations including
hotels and bathrooms are becoming a significant threat worldwide.
These hidden cameras are easily purchasable and are extremely dif-
ficult to find with the naked eye due to their small form factor. The
state-of-the-art solutions that aim to detect these cameras are lim-
ited as they require specialized equipment and yield low detection
rates. Recent academic works propose to analyze the wireless traffic
that hidden cameras generate. These proposals, however, are also
limited because they assume wireless video streaming, while only
being able to detect the presence of the hidden cameras, and not
their locations. To overcome these limitations, we present LAPD, a
novel hidden camera detection and localization system that lever-
ages the time-of-flight (ToF) sensor on commodity smartphones.
We implement LAPD as a smartphone app that emits laser signals
from the ToF sensor, and use computer vision and machine learning
techniques to locate the unique reflections from hidden cameras.
We evaluate LAPD through comprehensive real-world experiments
by recruiting 379 participants and observe that LAPD achieves an
88.9% hidden camera detection rate, while using just the naked eye
yields only a 46.0% hidden camera detection rate.

CCS CONCEPTS
• Human-centered computing → Mobile computing; • Com-
puter systems organization → Sensors and actuators.
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Figure 1: Figure depicts a user operating a smartphone run-
ning the LAPD app. LAPD emits laser pulses from the smart-
phone’s time-of-flight (ToF) sensor, and detects reflections
from a hidden camera concealed in a water bottle. LAPD an-
notates the location of the hidden camera on the screen.

1 INTRODUCTION
Tiny hidden spy cameras placed in sensitive locations such as hotel
rooms and lavatories are increasingly a threat to individual privacy
globally [31, 33, 53, 67, 81, 97]. For example, in South Korea alone,
there were over 6,800 such reported cases in a single year [22, 65, 69].
These hidden cameras are difficult to detect due to their small
form factors, with lens diameters as small as 1 – 2 millimeters
[22, 69, 75, 87]. Consequently, the general public is left vulnerable
and generally relies on the authorities to find these cameras [60].

The state-of-the-art solutions to assist authorities and the general
public to detect and localize hidden cameras are commercial “hidden
camera detectors” [61, 85]. A user looking through a detector’s
viewfinder observes bright reflections from nearby camera lenses
due to the red light emitted from LEDs on the detector. While more
effective than the naked eye, the users must carry such devices with
them. In addition, the detectors exhibit high false positives from
reflective surfaces [21].

In attempts to overcome the limitations of the state-of-the-art
detectors, recent academic works propose to detect the presence
of hidden cameras by analyzing the wireless traffic they generate
[15, 16, 44, 48, 57, 78, 91, 92]. However, these techniques bear two
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main limitations. First, they aim to detect only the presence of
the hidden cameras, and not their exact location. Second, these
techniques are only applicable to hidden cameras that wirelessly
stream their recorded video. However, many small hidden cameras
only passively record to a local memory card [3, 7, 32, 53] to save
power and/or maintain a small form factor [2, 51].

In light of the above limitations, we ask the following question
– can we propose a solution that only leverages an individual’s
commodity smartphone to automatically detect and localize
hidden cameras? To answer this question, we propose LAPD (Laser-
Assisted Photography Detection), that utilizes information from
laser time-of-flight (ToF) depth sensors increasingly equipped in
modern smartphones. These ToF sensors are originally intended to
measure depth to aid augmented reality applications such as im-
mersive gaming [66], contactless distance measurement [28], and
more [42, 86, 95]. Figure 1 illustrates the process of using LAPD to
detect hidden cameras. The user selects a suspicious object from
the LAPD app on their smartphone, and is guided through a quick
scan of the object. During the scan process, the ToF sensor emits
laser pulses and receives the reflected light off of the object – such
as the water bottle – and its surroundings. Specifically, the hidden
camera embedded in the object reflects the incoming laser pulses
at a higher intensity than its surroundings due to an effect called
lens-sensor retro-reflection. This occurs when almost all light energy
impacting an object is reflected directly back to the source (see
Section 2.2). These unexpectedly high-intensity reflections from
hidden cameras cause certain regions of the ToF sensor to be “satu-
rated” and appear as black pixels. LAPD processes these saturated
areas to automatically identify the hidden camera and its location
and displays it on the user’s smartphone screen.

However, detecting the hidden cameras with commodity smart-
phones comes with three inherent challenges that render this prob-
lem extremely difficult. First, different objects that embed the hidden
cameras may cause varying reflectivity. Hence, it is critical that the
smartphone be located at an ideal distance away from the object. If
the phone is too close, the ToF sensor will oversaturate. Similarly,
if the phone is moved further away, insufficient light will reach the
ToF sensor and hinder the observations. To overcome this challenge,
LAPD utilizes augmented reality to guide the user to move closer
and further away from the object, calculating the ideal distance by
determining the object’s reflectivity at various distances.

Second, modern smartphones are significantly constrained by
the equipped ToF sensor hardware – both in spatial (i.e., num-
ber of pixels) and bit resolutions (i.e., number of bits per pixel) –
consequently limiting the amount of information for LAPD. This
constraint leads to difficulties in distinguishing reflections from the
hidden camera lens (as small as 1 – 2 millimeters) as opposed to
other reflections from the surroundings as it is difficult to discern
the shape, size, and precise intensity of the reflections. Hence, this
challenge yields many false positives. To overcome this challenge,
we design and implement a chain of filters including deep-learning-
based filters that incorporate multi-modal information – including
depth and reflection intensities – to eliminate false positives.

Third, the reflections are limited by their optical properties such
that they are only observed within a constrained angle. Specifically,
this is a 20° field-of-view (FoV) cone projected from the hidden
camera. Hence, this challenge exacerbates the difficulty of detecting

Figure 2: Figure depicts an example of a commercially avail-
able hidden camera product, namely a water bottle. We also
illustrate the lens retro-reflection effect and its correspond-
ing ideal distance and maximum visible Field-of-View (FoV).
Retro-reflection occurs when a lens-sensor combination re-
flects incoming light directly back towards the source.

hidden cameras as it restricts the observable angle. We exploit this
limitation by implementing an FoV filter that eliminates remaining
reflections – or candidate hidden cameras– which appear highly
reflective outside the constrained angle.

We implement LAPD as a smartphone app that runs in real-time
and evaluate it via comprehensive real-world experiments under
varying conditions. We recruit 379 participants to compare the
results with state-of-the-art commercial hidden camera detectors
and using only the naked eye. From our comprehensive experiments,
LAPD achieves an 88.9% hidden camera detection rate, compared to
just using the naked eye which yields only a 46.0% hidden camera
detection rate. Overall, we make the following contributions:

• We propose LAPD that uses time-of-flight (ToF) sensors on
commodity smartphones to automatically detect and localize
passively recording hidden cameras.

• We overcome inherent challenges with LAPD’s system de-
sign, using computer vision and deep-learning techniques.

• We implement LAPD as a fully functional end-to-end mobile
application that is able to detect hidden cameras in real-time.

• We demonstrate through real-world experiments that LAPD
is able to outperform the state-of-the-art hidden camera
detectors and naked eye observations.

2 BACKGROUND AND FEASIBILITY STUDY
We now present the relevant background information and our
feasibility study of LAPD.

2.1 Hidden Spy Cameras
There are growing security and privacy concerns over hidden spy
cameras including hotels and vacation rentals [22, 31, 51, 53, 60,
65, 67, 69, 87, 97]. These hidden cameras are typically hidden in
innocuous-looking items such as alarm clocks, pens, and even water
bottles [2, 60, 61, 69, 85, 87]. Many hidden cameras can be easily
purchased online for tens of dollars [3, 7, 32].

A hidden camera typically consists of an electronic camera mod-
ule and housing that hides the module. The camera module contains
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Figure 3: Figure depicts the operation of a commercial hid-
den camera detector device. The red-tinted image repre-
sents the view through the detector’s viewfinder, indicating
a bright spot at the location of the hidden camera.

two major components, namely an image sensor and a lens. Regard-
less of the housing’s design, the camera module’s lens is always
exposed so that it can capture images or video [51, 65, 85]. Image
sensors are mostly Charge Coupled Device (CCD) or Complemen-
tary Metal Oxide Silicon (CMOS) sensors. Pinhole lenses are mostly
used in hidden cameras due to their small sizes of approximately 1
to 2 mm in diameter [22, 69, 75, 87]. Most lenses are circular as it is
easier for manufacturers to grind and polish them into a circular
shape (e.g., on a lathe) [96]. LAPD utilizes these properties, namely
the small size and circularity of lenses, in Section 3.6.2 to better
distinguish between hidden cameras and other reflections.

2.2 Lens-Sensor Retro-Reflection
Lens-sensor retro-reflection, also known as “cat-eye reflection”,
describes the effect where for certain optical systems, almost all
incident light energy is reflected directly back to the source. Hidden
cameras are one such system that causes retro-reflections. Figure 2
illustrates an example where retro-reflection occurs between a light
source and a camera hidden in a water bottle. When a light ray
passes through the lens in a hidden camera module and hits the im-
age sensor, it is reflected in the parallel but opposite direction as the
incident light. However, retro-reflection is only visible in a limited
field-of-view (FoV). The FoV is a cone spanning approximately 20°
originating from the hidden camera [54–56]. The visible distance is
also limited because the intensity (𝐼 ) of the reflected light decreases
as the distance (𝑑) increases due to the light energy spreading over
a wider area according to the Inverse Square Law (𝐼 ∝ 1

𝑑2 ) [12]. In
practice, the limited FoV and visible distance make hidden camera
detection challenging. To address this issue, LAPD guides users to
the optimal boundary: a region at an acceptable distance and angle
from a suspicious object. LAPD also leverages the limited FoV to
reject spurious reflections, thus turning the physical limitations of
retro-reflection into a tool to remove false positives.

2.3 State-of-the-Art Hidden Camera Detectors
Commercial hidden camera detectors [4–6, 39, 80], such as the
CC308+ [5] and K18 [6], are widely used as state-of-the-art solu-
tions to assist the authorities and general public to detect hidden
cameras [61, 85]. They use blinking or continuous red LEDs to
generate retro-reflections from hidden cameras that a human op-
erator attempts to interpret. Figure 3 depicts an example of a user
scanning a suspicious object (e.g., a wall plug) using such a detector.

(a) RGB Image (b) Intensity Map (c) Depth Map

Figure 4: Figure 4(a) depicts the RGB image of a commer-
cially available hidden camera product (i.e., a water bottle).
Figure 4(b) depicts the intensity map of the scene extracted
from a smartphone ToF sensor, with the retro-reflection
from a hidden camera in the center, surrounded by other
spurious reflections. Black areas indicate highly reflective
regions. Figure 4(c) depicts the corresponding depth map.

A user looking through the detector’s viewfinder observes a bright
reflection from the camera’s lens due to the red light emitted from
LEDs on the detector. However, it is difficult and cumbersome for a
user to correctly identify a hidden camera due to numerous other
visible bright spots, rendering such a solution less effective in the
real-world. In contrast, LAPD automatically removes most of the
false positives, thus alleviating the burden on the user.

2.4 Smartphone Time-of-Flight Sensors and
Feasibility Study

Smartphone ToF Sensors. Many modern smart devices [37, 38,
46, 77] have built-in Time-of-Flight (ToF) cameras for applications
such as distance measurement, motion tracking, depth-of-field ef-
fects, and augmented reality [19, 23, 42, 86, 95]. A smartphone ToF
sensor uses near-infrared (≈850 nm) light, which is invisible to the
human eye, to obtain depth information. One of the methods to
estimate the distance or depth (𝑑) uses the speed of laser signal (𝐶)
and the time-delay of the reflected light (Δ𝑡 ) with a simple calcu-
lation (𝑑 = 𝐶×Δ𝑡

2 ) [45]. A ToF sensor captures depth information
by emitting light from a laser, receiving its reflections, and storing
the data in a two-dimensional depth map. It also provides a confi-
dence measure of the estimated depth to indicate its accuracy and
validity [59], which is also stored in a two-dimensional confidence
map. ToF sensors often store such information as 16 bits per pixel,
where the first 13 bits refer to the depth data for each pixel (in mm),
and the last 3 bits represent the confidence of depth estimation at
the pixel. Note that nearby low confidence regions are typically
associated with unexpectedly high-intensity reflections [59]. In this
paper, refer to the confidence map as the intensity map. LAPD
utilizes both depth and intensity maps to identify high-intensity
retro-reflections from hidden cameras.
Feasibility Study. To test our hypothesis that the depth and in-
tensity information from ToF sensors can be used to detect hidden
cameras, To test our hypothesis to utilize the ToF sensors to detect
hidden cameras, we conduct a feasibility study on a commercially
available hidden camera in a water bottle. Figure 4(a) depicts the
RGB image, Figure 4(c) the depth map, and Figure 4(b) the intensity
map of the water bottle. Note that the high-intensity retro-reflection
from the hidden camera is visible in the intensity map. However,
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due to the limited spatial and bit resolution describing the intensity
map, it is difficult to differentiate hidden camera retro-reflections
from other high-intensity reflections. In fact, we indicate two spu-
rious reflections on Figure 4(b) that do not originate from a hidden
camera. There may be many such spurious reflections due to shiny
or glossy objects. We address such challenges by applying several
filters described in Section 3.

3 SYSTEM DESIGN AND IMPLEMENTATION
This section presents LAPD’s design and implementation details.

3.1 System Model
The goal of LAPD is to detect the presence and location of hidden
cameras using only the information available from smartphones
with ToF sensors. We design LAPD to satisfy the following require-
ments: (1) accessibility: operate on already-existing commodity
smartphones with ToF sensors, (2) accuracy: correctly identify the
presence and location of hidden cameras, and (3) usability: automat-
ically detect these hidden cameras with minimal user intervention.
We assume that the hidden camera lenses are exposed and oriented
to the probable location of the victim. We also assume that LAPD
runs on a smartphone equipped with a ToF sensor.

3.2 Design Overview
Figure 5 illustrates the components of LAPD’s design. LAPD re-
quires accurate 3D localization as a prerequisite, which is described
in 3D Localization (§3.3). The user first interacts with the LAPD app
in the Suspicious Object Selection (§3.4) phase to select an object to
scan. The 3D location of the selected object is passed as input to
the Scan Distance Computation (§3.5) phase. Here, LAPD guides the
user to an appropriate distance from the object to maximize the
probability of observing a hidden camera. The user maintains this
distance during the Object Scan (§3.6) phase, where LAPD guides
them to move the smartphone methodically to scan the surface
of the object for hidden cameras. During this phase, LAPD pro-
cesses and filters image frames from the ToF sensor to decide if
any high-intensity reflections from the object are likely to originate
from hidden cameras. If a hidden camera is detected, its location is
annotated on the screen so that the user may take further action.
We now present the details of LAPD’s design.

3.3 3D Localization
LAPD requires a 3D understanding of the space around the user
to track potential hidden cameras even if the user is moving. To
achieve this, we implement LAPD using Android’s augmented real-
ity framework (ARCore) [27] which includes 3D localization. As
3D localization is not our contribution, we assume the following
abstractions are available from the ARCore framework: any point
(𝑢, 𝑣) on the smartphone’s 2D screen can be transformed to a 3D
coordinate (𝑥,𝑦, 𝑧) with a function 𝑇2D→3D (𝑢, 𝑣), and the 3D coor-
dinates of the smartphone’s current position (𝑥𝑝 , 𝑦𝑝 , 𝑧𝑝 ) are always
accurately known. ARCore achieves this by using the smartphone’s
camera and inertial sensors to perform Simultaneous Localization
and Mapping (SLAM) of the environment [64]. This generates a 3D
representation of the environment, and tracks the smartphone’s
position and orientation within it.

3.4 Suspicious Object Selection
In this module, the user begins the hidden camera detection process
by constraining LAPD’s search space. The user selects an object
of interest on the 2D smartphone screen, where the goal is to take
as input the selected 2D coordinates and transform them into the
corresponding 3D coordinates of the object. The object’s 3D coor-
dinates are used to track the object in 3D space regardless of the
phone’s motion in the subsequent phases. The user first draws a
2D bounding box with a center point (𝑢𝑐 , 𝑣𝑐 ), around the object.
This 2D center point is subsequently transformed into the 3D co-
ordinates of the object (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ) using the transform function
𝑇2D→3D (𝑢𝑐 , 𝑣𝑐 ). These 3D coordinates are passed to the next phase.

3.5 Scan Distance Computation
Recall from Section 2.2 that each object with a hidden camera may
have a different ideal distance where a retro-reflection is visible. If
the user is too close, the hidden camera reflection is obscured, and
if they are too far, not enough light reaches the ToF sensor. The goal
of this phase is to calculate the ideal distance (𝑑𝑖𝑑𝑒𝑎𝑙 ) within the
boundary that the user should stand from the object to maximize
the probability of detecting any hidden cameras. This phase takes
as input the 3D coordinates of the object (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ) to scan, and
guides the user’s movement to compute 𝑑𝑖𝑑𝑒𝑎𝑙 .

To illustrate the importance of computing 𝑑𝑖𝑑𝑒𝑎𝑙 , Figure 6(a) de-
picts a water bottle that a user inspects with LAPD. Figures 6(b)
to 6(d) illustrate the laser intensity values reflected from the water
bottle at three distances. Black regions indicate high-intensity re-
flections that saturate the sensor. The hidden camera’s expected
location is circled in each image, and the other black areas indi-
cate spurious reflections. The hidden camera’s reflection is only
clearly visible in Figure 6(c), when the user is standing near 𝑑𝑖𝑑𝑒𝑎𝑙 .
If the user is too close (Figure 6(b)) or too far (Figure 6(d)), the
hidden camera reflection cannot be detected correctly. Therefore, it
is crucial to compute 𝑑𝑖𝑑𝑒𝑎𝑙 accurately.

Computing 𝑑𝑖𝑑𝑒𝑎𝑙 is challenging as it varies across objects. Re-
flective objects return a larger fraction of the laser’s intensity to
the ToF sensor at a given distance than others [1]. Hence, we de-
velop an algorithm to generically detect 𝑑𝑖𝑑𝑒𝑎𝑙 for each object. We
define 𝑆𝑎𝑡𝑀𝑎𝑥 as the number of pixels in the largest black area in
the intensity map. Observe from Figure 6 that as the user moves
further from the object, 𝑆𝑎𝑡𝑀𝑎𝑥 decreases as the sensor receives
less light [12], eventually becoming 0. If a hidden camera reflection
is present, for an empirically determined 𝑝 , 0 < 𝑆𝑎𝑡𝑀𝑎𝑥 < 𝑝 pixels.
(0 < 𝑆𝑎𝑡𝑀𝑎𝑥 ) holds as a hidden camera reflection appears as at least
one black pixel. (𝑆𝑎𝑡𝑀𝑎𝑥 < 𝑝) holds as a hidden camera reflection
has a maximum size determined by its lens diameter. Assuming
hidden cameras with a lens size of 1 – 2 mm, we set 𝑝 = 10.

LAPD first guides the user to move to within 20 cm of the
object to saturate the ToF sensor (𝑆𝑎𝑡𝑀𝑎𝑥 ≫ 𝑝), and then
asks them to gradually move further from the object. LAPD
uses the object’s 3D coordinates (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ) and the phone’s lo-
cation (𝑥𝑝 , 𝑦𝑝 , 𝑧𝑝 ) to determine the distance from the object

𝑑 =

√
(𝑥𝑝 − 𝑥𝑐 )2 + (𝑦𝑝 − 𝑦𝑐 )2 + (𝑧𝑐 − 𝑧𝑝 )2. As 𝑑 increases, LAPD

continually computes 𝑆𝑎𝑡𝑀𝑎𝑥 using image analysis techniques
(see High-Intensity Reflection Region Extraction (§3.6.1)). When
𝑆𝑎𝑡𝑀𝑎𝑥 < 𝑝 , the algorithm returns the current distance as 𝑑𝑖𝑑𝑒𝑎𝑙 .
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Figure 5: Figure depicts the flowchart of LAPD’s design. The user first uses LAPD to select a suspicious object. LAPD then guides
them to determine the ideal scan distance, and scan the object for hidden cameras. During the scan, LAPD uses a computer
vision and machine learning processing pipeline to detect reflections from hidden cameras while rejecting false positives.

Figure 6: Figure depicts the effect of varying the smart-
phone’s distance to the target object. The hidden camera’s lo-
cation is circled.When the phone is too close or far from the
object, the hidden camera is not visible as the resulting re-
flections either oversaturate the sensor or are not detected.

3.6 Object Scan
The goal of this phase is to identify the location of hidden cameras
within the selected object by observing it from multiple locations.
It takes the object’s location (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ) and the ideal distance to
stand from the object, 𝑑𝑖𝑑𝑒𝑎𝑙 , as inputs and annotates the suspected
locations of hidden cameras on the smartphone’s screen. LAPD
achieves this by instructing the user to move the smartphone in
a grid pattern around the object while maintaining the distance
𝑑𝑖𝑑𝑒𝑎𝑙 from the object. Figure 7 illustrates the scan process and
coordinate system. LAPD generates a scan grid in the X-Y plane
which is subdivided into multiple square areas. The scan grid is per-
pendicular to the normal vector from the object to the smartphone.
LAPD guides the user to each square in the grid to maximize the
probability of encountering hidden camera reflections. The entire
scan takes approximately 30 seconds to one minute.

During the scan, LAPD processes in real-time a continuous
stream of images from the smartphone’s ToF sensor to identify
any hidden cameras within the scanned object. The High-Intensity
Reflection Region Extraction module (§3.6.1) initially identifies all

Figure 7: Figure depicts the scan grid that LAPD generates
for the targeted water-bottle object. The user is guided to
each square in the grid to increase the probability of observ-
ing a hidden camera. The scan grid is larger than the FoV
of any potential cameras to trigger the FoV Filter on poten-
tial false positives. The grid is in the X-Y plane, parallel to
the smartphone screen at the ideal distance away from the
object, and the Z-axis lies on the normal vector of the plane.

possible high-intensity reflections (or “blobs”) that could corre-
spond to a hidden camera. However, this also results in a large
quantity of false positive blobs that require multiple filtering passes
to remove. Subsequently, the Shape and Distance Filters (§3.6.2) re-
move false positives based on the known physical properties of
hidden cameras. As many false positives have the same shape and
size as hidden camera reflections, we then apply a Deep Learning
Filter (§3.6.3) to remove these complex cases. However, we find
there is still insufficient information within a single ToF frame to
remove all false positives. LAPD then converts the remaining blobs’
2D locations to 3D coordinates to track them across frames. The
Field-of-View (FoV) Filter (§3.6.4) compares the current and historical
3D blob locations to further remove false positives observed from
an unexpectedly large field-of-view. Finally, the Decision-Making
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Figure 8: Figure depicts the process of LAPD’s Object Scan
phase. The aim is to only select the laser intensity blob cor-
responding to a true hidden camera. Blobs that are too large
or not square enough are removed first, and any remaining
false positive blobs are removed by the deep learning filter.

Module (§3.6.5) decides if a blob is a hidden camera when sufficient
information is collected. We now explain each module in detail.

3.6.1 High-Intensity Reflection Region Extraction. This module
aims to extract all high-intensity regions that may contain a hidden
camera from its input of a 2D laser intensity map,𝑀𝐼𝑛𝑡 as depicted
in Figure 5. The module outputs a list of such candidate regions.
1○ Binarization. We first normalize the intensity map 𝑀𝐼𝑛𝑡 be-
tween 0 and 1, where 1 represents the highest (saturated) light
intensity. Recall from Section 2.4 that if a hidden camera is present,
we expect a high-intensity reflection from its location. Therefore, to
identify the candidate regions, we first identify all saturated areas,
𝑀𝑠𝑎𝑡 , by binarizing the laser intensity map – i.e., for all 2D coor-

dinates 𝑢, 𝑣 in the map, 𝑀𝑠𝑎𝑡 (𝑢, 𝑣) =

{
white if𝑀𝐼𝑛𝑡 (𝑢, 𝑣) < 1
black if𝑀𝐼𝑛𝑡 (𝑢, 𝑣) = 1

.

This produces an image where black pixels represent high intensity
regions, and white pixels represent low intensity regions.
2○ Blob Extraction. As clusters of high-intensity pixels (blobs)
may indicate a hidden camera, LAPD extracts them by applying a
connected components extraction algorithm on𝑀𝑠𝑎𝑡 . A connected
component is a cluster of black pixels that are adjacent to each
other by 4-way connectivity (no diagonals) [26]. We compute these
components using the Scan plus Array-based Union-Find (SAUF)
algorithm [93]. SAUF detects connected components by exploring
each pixel and using a union-find data structure to store connec-
tivity information. The SAUF algorithm is applied to the binarized
map𝑀𝑠𝑎𝑡 to produce a list of blobs. As many blobs may be detected
for each frame due to spurious reflections, the following modules
attempt to remove as many false positives as possible.

3.6.2 Shape and Distance Filters. This module takes as input all
detected blobs from the previous module and reduces false positives
by removing blobs that violate the expected physical properties of a
hidden camera reflection. The Shape filters remove blobs if they are
too large (“Max-Size” filter) or not circular enough (“Squareness”
filter; see Section 2.1), while the Distance filter removes blobs that
are unexpectedly close or far from the smartphone. Figure 8 illus-
trates an example of a list of blobs extracted from a laser intensity
image of a water bottle, where shape filters remove blobs FP1, FP2,
and FP3. The Max-Size filter removes blobs with an area larger than
nine pixels (e.g., FP1, FP3), and the Squareness filter removes blobs

Figure 9: Figure depicts LAPD’s deep learning filter archi-
tecture, consisting of one input layer (stacked intensity and
depth ROI), two convolutional layers with max-pooling,
four dense layers, and an output node.

with |blob width - blob height| > 1 (e.g., FP2). We set these values
based on our empirical observations and prior work [34, 96].

The Distance filter considers the distance from the smartphone to
the detected blob and removes blobs outside a minimum distance,
𝑑𝑚𝑖𝑛 , and maximum distance, 𝑑𝑚𝑎𝑥 . This is a very preliminary
filter that aims to remove mostly random noise. 𝑑𝑚𝑖𝑛 is where the
ToF sensor is saturated regardless of the target object, and 𝑑𝑚𝑎𝑥 is
where there is insufficient reflected light from any hidden camera.
We obtain the constants 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥 through comprehensive
experiments. We calculate the distance to the blob using the ToF
depthmap corresponding to the current intensitymap. This distance
is then used to remove blobs outside the expected range.

While the Shape and Distance filters remove some false positive
blobs, in many cases, up to 50% – 80% of them remain. Many such
blobs are sufficiently small, square, and at the right distance to pass
the shape and distance filters (e.g., FP4, FP5, FP6). Therefore, we
need additional filters to further remove false positives.

3.6.3 Deep Learning Filter. This module aims to use a deep-learning
model to remove the remaining false positive blobs. The model takes
as input the list of blobs that passed the Shape and Distance Filters,
the intensity map 𝑀𝐼𝑛𝑡 , and the corresponding depth map, and
removes blobs that are not likely to be hidden cameras. We rely
on deep learning due to the limited information in each ToF frame,
as more complex features are then required to extract sufficient
information for an accurate filter. The model’s goal is to use the
values of depth and intensity pixels around each blob to learn
patterns that uniquely define hidden cameras.

LAPD uses on-device deep learning with a Convolutional Neural
Network (CNN) to remove false positive blobs. For each blob, the
model outputs a value between 0 and 1, indicating its confidence
that the blob represents a hidden camera. We use a novel approach
of combining the depth and intensity maps in the input layer,
as using only one modality yields low accuracy. Depth information
alone only indicates the surface texture near the blob, while inten-
sity information alone is susceptible to false positives. However,
their combination provides mutual information to produce a dis-
criminative model. We choose a CNN architecture as it consistently
performs well in image classification tasks [54, 55]. Figure 9 depicts
the architecture. For each detected blob, the input to the CNN is a
5 × 5 × 2 image. LAPD crops a 5 × 5 region of interest (ROI) around
the blob’s center from both the intensity and depth maps, and stacks
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them in the channel dimension. The images are only of size 5 × 5
to focus the CNN on the local features of the blob, and avoiding
overfitting to the hidden camera’s housing object. After the input
layer, our architecture consists of two ReLu activated convolutional
layers of size 2 × 2 with 32 filters and 3 × 3 with 64 filters, respec-
tively, with max-pooling and batch-normalization layers between
them. This is followed by four fully connected dense layers of sizes
64, 16, 4, and 4, respectively, with a significant dropout rate of 0.8 to
control overfitting, and a final output node with sigmoid activation.

The depth ROI must be further processed to maximize the
model’s performance, as it can represent a large range of distances
from 0 to over 5000 mm. As distance filters are already applied,
the precise depth values are not as useful as the minute surface
depth variations near the blob. For instance, these differences could
indicate a hole containing a hidden camera. Hence, we subtract the
median depth value of the ROI from every pixel to focus the model
on depth variations near the reflection to improve the accuracy.

We implement our model using Keras [17] and Tensorflow
Lite [25]. We train our model on a large dataset of reflections from
hidden cameras in different housings totaling over 10 K manually
labelled instances. We split the dataset into 80% for training and
20% for testing. The train and test sets do not share any hidden
camera housings. This prevents the system from overfitting on the
housings instead. As reflections from hidden cameras are rarer than
spurious reflections, the training dataset has a class imbalance of 1
hidden camera : 6.27 non-camera samples. We correct this by ap-
plying class weightages during training with a binary crossentropy
loss function and the Adam [41] optimizer. We train the model on
two NVIDIA Titan V GPUs with a batch size of 32 for 400 epochs
and save the model with the lowest loss. Finally, we convert our
model to a Tensorflow Lite model, which is then used in our app.
The model seamlessly removes blobs with a confidence score of less
than 0.5, while maintaining a target of 30 frames per second. Subse-
quently, we convert the 2D coordinates of each remaining blob into
3D coordinates with the 𝑇2D→3D coordinate transform function
from 3D Localization (§3.3). This list of coordinates is passed to the
subsequent module for further filtering.

3.6.4 Field-of-View (FoV) Filter. This module aims to further re-
move false positives from the remaining blobs by identifying those
that are outside the maximum retro-reflection FoV of 20°. Such
blobs cannot originate from a hidden camera with a 1 – 2 mm di-
ameter lens (see Section 2.2). This is a novel approach that exploits
the limitations of retro-reflection as useful information. While pre-
vious modules operate on each ToF camera frame independently,
the FoV filter accumulates state information in the Candidate Re-
gion State hashmap across multiple frames. This is necessary as
we need to observe a blob from at least two unique smartphone
locations to calculate its observable FoV. For each observed blob
at 3D location (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ), we record a list of the smartphone’s
3D locations (i.e., (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ) at frame 𝑖) where the blob is visible.
For instance, (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ) → [(𝑥1, 𝑦1, 𝑧1), (𝑥4, 𝑦4, 𝑧4)] indicates a
blob at (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ) is visible at two different smartphone locations
at frame 1 and 4. With the smartphone at a constant 𝑧 distance
from the object from Scan Distance Computation (§3.5), we can
compute the maximum acceptable xy distance for a 20° FoV be-
tween any two observations as 2𝑧 tan(10 deg). In our example,

if
√
(𝑥1 − 𝑥4)2 + (𝑦1 − 𝑦4)2 > 2𝑧 tan(10 deg), (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ) is disre-

garded as a potential hidden camera location and removed from
the hashmap. After the FoV filter is applied across the hashmap,
it is passed as input to the Decision-Making Module. Recall from
Figure 7 that the FoV Filter also defines the dimensions of our scan
grid. For the filter to potentially remove any blobs, the user must
move the smartphone beyond the 20° camera FoV of any hidden
cameras. Hence, the scan grid dimensions are computed to be larger
than the FoV region of any potential hidden cameras.

3.6.5 Decision-Making Module. This module analyzes the Candi-
date Region State hashmap to ultimately decide which blobs are
hidden cameras. Upon scan completion, LAPD annotates blobs sus-
pected to be hidden cameras. To conclude that a blob is a hidden
camera and not a random error, LAPD observes it from 𝑛 positions
that are at least 𝑑𝜖 distance apart from each other, where 𝑛 and
𝑑𝜖 are empirically determined values. We require 𝑛 observations
of each blob as noise in our processing pipeline may cause a few
sparse false positives, but genuine hidden cameras are visible mul-
tiple times during the scan. To avoid collecting all 𝑛 observations
while the user is stationary, we require all observations to be 𝑑𝜖
apart from one another. Taking the state hashmap from the previous
section of (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ) → [(𝑥1, 𝑦1, 𝑧1), (𝑥4, 𝑦4, 𝑧4)], the observations
(𝑥1, 𝑦1, 𝑧1) and (𝑥4, 𝑦4, 𝑧4) may only both be present if they are 𝑑𝜖
apart, i.e.,

√
(𝑥1 − 𝑥4)2 + (𝑦1 − 𝑦4)2 > 𝑑𝜖 . In this example, if the

observations are far enough apart, and only two observations are
necessary (𝑛 ≤ 2), we conclude that (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ) contains a hidden
camera. This module also provides users with more control by tak-
ing the majority decision across multiple scans of the same object.
For example, if LAPD indicates a hidden camera blob in an identi-
cal position in two out of three trials, LAPD can report with high
certainty that a hidden camera is present.

4 EVALUATION
We now evaluate LAPD to demonstrate its real-world performance.

4.1 Experimental Setup
Apparatus. We develop and test LAPD on three popular smart-
phones – Samsung Galaxy S20+, S20 Ultra 5G, and Note 10+ [13,
20, 89, 90]. These contain 480 × 640 resolution Sony IMX516 ToF
sensor [72], but currently, the Android API only provides a 240
× 320 image. We develop the LAPD app with Android SDK v24,
ARCore v1.23.0, and Tensorflow Lite v2.3.0.

Figure 10 illustrates our experimental procedures for evaluating
LAPD. We compare LAPD’s performance with the existing state-of-
the-art K18 detector [6], and using just the naked eye. We test both
the blinking and continuous camera reflection detection modes of
the K18 for completeness. Thesemodes refer to the state of the K18’s
red illumination LEDs. In the blinking mode, users can observe the
differences in a static scene under ambient and LED-lit conditions
to spot the hidden cameras. Users that prefer more manual control
and speed may use the continuous mode that powers the LEDs
constantly. We evaluate LAPD against 30 randomly selected objects
(see Section 4.3.1), where nine of them contain hidden cameras.
Specifically, we modify nine objects by drilling 1.5 mm diameter
holes, or using existing holes, to insert and expose the lens of an

294



SenSys ’21, November 15–17, 2021, Coimbra, Portugal Sriram Sami, Sean Rui Xiang Tan, Bangjie Sun, and Jun Han

Figure 10: Figure depicts the setup of LAPD’s end-to-end and
controlled experiments, which compares hidden camera de-
tection rates and false positive rates for LAPD against other
baselines. The controlled experiments vary environmental
and system parameters to comprehensively evaluate LAPD.

Figure 11: Overall hidden camera detection and false posi-
tive rates for LAPD, K18 baselines, and naked eye baseline.

OV2640 [68] camera.We choose the OV2640 as it is used extensively
in surveillance systems [82], integrated into popular products [9,
94], and even DIY spy cameras [18, 74]. Note that we do not use
these 30 objects in the training set of LAPD’s deep learning filter, and
hence they are completely unseen test cases.
Terminology and Metrics. We define these terms and metrics to
evaluate LAPD’s overall results. A Hidden Camera Detection occurs
when a hidden camera’s location is guessed within the acceptable
ground truth region. A False Positive occurs when a hidden camera’s
location is guessed outside the ground truth region, or the guessed
object does not contain a hidden camera. We note that the Hidden
Camera Detection Rate and False Positive Rate may not sum to a
value of one as the camera detection rate applies only to the nine
objects containing a hidden camera.

4.2 End-to-End Experiments
Data Collection. To evaluate the overall performance of end-to-
end experiments, we collect data for LAPD on a Samsung Galaxy
S20+ and three baseline methods – the K18 detector in continuous
mode, blinking mode, and the naked eye. We test these methods

on the aforementioned 30 objects. For LAPD, one of this work’s
authors scans each object three times to obtain a total of 90 obser-
vations. We compute the detection and false positive rates using
majority voting across the three trials (see Section 3.6.5). Due to
COVID-19 restrictions, we recruit 379 participants from Amazon
Mechanical Turk (MTurk) to evaluate the baseline methods as they
are dependent on human judgment. We ask each participant to
enroll in one of the three baseline methods and watch a set of pre-
recorded videos (available at https://bit.ly/lapd-sensys) of the 30
objects an unlimited number of times, simulating repeated trials
per participant. Then, participants may choose to annotate the
location of hidden cameras on images of the objects. Specifically,
we use a Samsung S20+ color camera to capture videos of all 30
objects for each of the baselines, where each video inspects one
object from 40 cm and 70 cm distances. For the K18 baselines, we
record the videos through the K18 viewfinder and ensure that if an
object contains a hidden camera, a retro-reflection must be clearly
visible in the recorded video. As we are not directly testing the
usability of each method, LAPD and the baselines are conducted
in an “expert” manner for fairness. We obtain approval for these
experiments through our university’s Institutional Review Board.
Overall Results. We illustrate the end-to-end results in Figure 11,
where we observe that LAPD correctly locates hidden cameras
88.9% of the time (eight out of nine objects across multiple trials),
significantly outperforming the baseline methods. Even if majority
voting is disabled, LAPD still achieves a 77.8% detection rate. On
the contrary, the state-of-the-art K18 detector’s continuous and
blinking methods only exhibit 62.3% and 57.7% detection rates,
respectively, despite ensuring that all hidden camera reflections
are present in the K18 video recordings. The naked eye method
further reduces the detection rate to 46.0%. As each hidden camera
is recessed within its housing, there are limited visual cues for the
naked eye. The K18methods exhibit increased detection rates, likely
assisted by our ensured presence of a bright retro-reflection for all
objects with hidden cameras. We find that objects possessing only
one obvious hole result in the highest true positive rates, as users
could unambiguously observe retro-reflections from that hole while
ignoring any spurious retro-reflections from the object’s surface.
However, we also find that such human judgment in the baseline
methods is detrimental to the overall false positive rate.

LAPD yields the lowest overall false positive rate of 16.67%, while
the two K18 methods and the naked eye yield 26.9%, 35.2%, and
54.9%, respectively. We can understand this effect by focusing on
two otherwise identical objects: wheelA (contains a hidden camera)
and wheelB (does not), which are illustrated in Figure 12. LAPD
detects the hidden camera in wheelA while maintaining a 0% false
positive rate for wheelB. We note that the K18 and naked eye meth-
ods have approximately 100% detection rates for wheelA, indicating
that the retro-reflection is in fact visible for the K18 videos, and
the hole in the object is obvious. However, they have false positive
rates of 43.3%, 49.1%, and 98.1% for wheelB, respectively. Clearly,
it is almost impossible to differentiate the two objects with the
naked eye. The K18 methods improve differentiability, but spurious
reflections cause users to incorrectly suspect hidden cameras in lo-
cations where none exist. Overall, LAPD’s processing pipeline and
automated decision-making reduce false positives, while its user
guidance ensures that most hidden camera reflections are captured.
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Figure 12: Figure depicts 30 objects tested. (a) depicts 21 objects without the hidden cameras. y-axis depicts the false positive
rate (where lower is better). (b) depicts nine objects with the hidden cameras. Similarly, y-axis depicts the false positive rate,
while x-axis depicts the hidden camera detection rate (where higher is better).

4.3 Controlled Experiments
We present the results of our comprehensive evaluation of LAPD
under varying experimental and environmental conditions. These
experiments are conducted using the same set of 30 objects and test
environment as LAPD in the End-to-End experiments.

4.3.1 Varying Camera Housings. We explore the effect of varying
hidden camera housings on LAPD’s performance.
Effect on Detection and False Positive Rates. Figure 12 illus-
trates the 30 objects selected for our evaluation and their detection
rates with LAPD across three trials. Specifically, Figure 12(a) depicts
21 objects without the hidden cameras, while Figure 12(b) depicts
nine objects that each embed a hidden camera. Certain objects have
A/B/C suffixes – they represent identical objects where only the
“A” object has a hidden camera. For both the figures, the y-axis
indicates the false positive rate for each object. For Figure 12(b),
the x-axis indicates the hidden camera detection rate. For instance,
an object with a hidden camera detection rate of 2/3 indicates that
LAPD detected the hidden camera in two out of three trials.

We obtain the previously discussed hidden camera detection rate
of 88.9% by observing that eight out of nine objects with hidden
cameras are detected in 2/3 (majority) trials or more. Similarly, the
false positive rate of 16.7% is derived from the five out of 30 objects
that cause false positives in over 2/3 trials. The yellowcar object is
the only outlier in the hidden camera detection rates, as its hidden
camera is acutely angled upwards, causing its visible FoV to be
higher than the generated scan pattern. However, such a setting is
impractical in the real world, as a hidden camera at such an angle is
ineffective at capturing portions of the surrounding environment.
We also note that the router generates a false positive reflection
often due to its white and glossy surfacewith over 100 possible holes
to hide a hidden camera. Even in this case, LAPD only generates
one additional false positive. We observe also that most objects
without hidden cameras do not cause any false positive reflections,
even after repeated scans. Certain glossy objects with holes tend to
produce false positives, such as wirebox and tablelamp. However,
this is not always the case, as the white glossy roller did not
result in any false positive reflections. Overall, we find that LAPD

(a) Varying target object on its min and max detectable distance
along with LAPD’s computed scan distance

(b) Varying target object on itsmax detectable angle

Figure 13: Effects of varying camera housings.

can detect hidden cameras across varying object types with high
accuracy while yielding a low false positive rate.
Effect on Ideal Distance and Maximum FoV. Recall that all ob-
jects with hidden cameras have an ideal distance and maximum FoV
where the hidden camera can be observed. We first evaluate the
effect of varying hidden camera housings on the distances where
they can be detected, as depicted in Figure 13(a). As a reference, the
figure indicates that the exposed OV2640 camera is visible from
approximately 0.45 m to 1.5 m. As housings occlude part of the
camera’s FoV, all other objects are visible over a shorter total range.

Recall from Object Scan (§3.6) that LAPD computes the ideal scan
distance for each object. Figure 13(a) illustrates that the computed
scan distance for each object is always within its minimum and
maximum visible distances. These results also prove the importance
of computing the ideal scan distance for each object. The router is
a glossy object that causes the ToF sensor to saturate excessively
until the user stands at least 0.71 m away. The figure indicates that
LAPD correctly instructs the user to stand 0.78 m away, ensuring
that they detect the hidden camera.
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(a) Different hidden camera modules

(b) Varying hidden camera module on its min and max detectable
distance, and LAPD’s computed scan distance

(c) Varying hidden camera module on itsmax detectable angle

Figure 14: Effects of varying the hidden camera module.

We evaluate the effect of varying hidden camera housings on
the camera module’s detectable FoV. Figure 13(b) indicates that the
exposed OV2640 camera has an average FoV of 17.5°. The FoVs of
the other objects are marginally less than 17.5° due to occlusion
caused by the camera housing. The wheelA object is an outlier with
only an 11.2° FoV; a portion of the camera lens is occluded due to
a misalignment of the lens and the drilled hole. Notably, all cases
have an FoV less than of 20°, ensuring that the FoV filter module
will not treat reflections from these objects as false positives.

4.3.2 Varying Hidden Camera Modules. We evaluate five hidden
camera modules, illustrated in Figure 14(a), to understand the dif-
ferences in their ideal distances and maximum FoVs. We conduct a
controlled experiment that only exposes the lens of each camera
during testing, while the rest is covered by matte black paper. Two
camera modules (i.e., OV2640 and OV5640) satisfy assumptions of
our system model with lens diameters of 1.5 mm, while the other
cameras have larger lens diameters of 6, 8, and 10 mm, respectively,
and are included for completeness. Figure 14(b) indicates that all
five camera modules have different detectable distances, and LAPD
guides the user to an appropriate distance for each. LAPD’s deep-
learning filter is trained on the OV2640 camera due to its ubiquity
[9, 18, 74, 82, 94], but it has not encountered reflections from the other
cameras prior to this experiment. LAPD is capable of detecting and
classifying these unseen reflections as hidden cameras.

Figure 14(c) indicates that the OV2640 and OV5640 camera mod-
ules have similar retro-reflection FoVs, and are accurately detected
by LAPD. Conversely, the remaining cameras with larger diameter
lenses exceed the 20° FoV and may be ignored by the filter. How-
ever, LAPD’s FoV acceptance angle can be dynamically increased
to target other hidden cameras of interest.

Figure 15: Figure depicts the effect of varying user’s scan
speed on the number of hidden camera detections.

(a) Varying ambient light conditions on min and max detectable
distance of an OV2640 camera

(b) Varying ambient light conditions onmaximumdetectable angle
of an OV2640 camera

Figure 16: Effectswhen varying ambient lighting conditions.

4.3.3 Varying Scan Speed. Recall from the Object Scan phase that
LAPD guides the user to various positions to observe the object. We
now present the effect of varying the user’s scan speed on the aver-
age number of detected hidden camera reflections in Figure 15. We
sweep the smartphone left-to-right three times across an OV2640
camera without a housing, initiating and completing the scan out-
side of its detectable FoV. We choose 0.05 m/s as the lowest average
scan speed to approximate the pace of a methodical scan, whereas
a 0.45 m/s speed approximates a careless scan. These speeds are
derived from the phone’s inertial measurement sensors.

We observe from Figure 15 that the number of hidden camera
detections reduces approximately linearly as the scan speed in-
creases. In our experiments, we empirically set six detections from
one location as our decision-making threshold (see Section 3.6.5)
for a hidden camera (i.e., 𝑛 = 6). At scan speeds of 0.35 m/s and
above, we receive fewer than six detections per sweep. However, a
full object scan involves on average two to five sweeps depending
on the object’s size. Hence, it is probable that even at a scan speed
of 0.45 m/s, LAPD will continue to detect hidden cameras.

4.3.4 Varying Lighting Conditions. As ToF sensors rely on receiv-
ing light in the infrared spectrum, we evaluate LAPD’s robustness to
varying ambient lighting conditions in Figures 16(a) and 16(b). We
collect detectable distance and angle data from the OV2640 camera
without a housing, while using LAPD under different combinations
of natural daylight and compact fluorescent light (CFL), as both
light sources are known to contain infrared components. We find
that LAPD’s performance is unaffected by ambient conditions, with
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(a) Varying smartphone types on min and max detectable dis-
tance of an OV2640 camera

(b) Varying smartphone types on max detectable angle of an
OV2640 camera

Figure 17: Effects when varying the smartphone types.

Figure 18: Figure depicts LAPD’s performance on rejecting
false positives for the filters presented in Section 3.6. We se-
lect six objects that generate a large quantity of spurious re-
flections due to their glossy and brightly-colored texture.

all values within the error bars. This is likely due to the narrow-
band light filter in the ToF sensor. We observe that even pointing
two identical phones’ ToF sensors at each other does not cause any
cross-interference. We conclude that the ToF sensors and therefore
LAPD is robust to changes in ambient lighting.

4.3.5 Varying Smartphone Types. Figures 17(a) and 17(b) illustrate
the effect of varying the smartphone running LAPD on the de-
tectable distance and angle data from the OV2640 camera without a
housing. We test the Samsung Galaxy S20+, S20 Ultra 5G, and Note
10+ smartphones. Similar to varying lighting conditions, the choice
of smartphone has no noticeable effect on the detectable distances
or angles, indicating that LAPD is robust to such variations.

4.4 False Positive Rejection Performance
We now evaluate LAPD’s ability to reject false positive blobs. Recall
that LAPD’s Shape Filters (§3.6.2) and Deep Learning Filter (§3.6.3)

Figure 19: Figure depicts the cumulative impact of LAPD’s
components on overall current draw.

aim to remove the significant number of false positive blobs that
appear in each frame, as each blob forces the user to spend time in-
vestigating it. False positives may also reduce the user’s willingness
to believe true hidden camera detections.

Figure 18 illustrates the ability of our Max-Size, Squareness, and
Deep Learning Filters to remove false positive blobs. We select six
additional objects without hidden cameras that especially challenge
LAPD by generating a large quantity of tiny spurious reflections. In
contrast, glass or mirrors tend to generate one large reflection that
is trivially filtered out. These six objects tend to be white and/or
glossy (generating intense reflections), and possess many creases
(generating multiple small reflections). LAPD is also not trained
on these objects. For each object, we find three viewing angles
that maximize the initial number of false positive blobs, and collect
blob filtering statistics at each angle over ten trials. The objects
each generate over 50 false positives per frame on average, and
certain objects like plasticbag generate over 100 per frame. We
then compute the average reduction in false positive blobs for each
object and each filters’ contribution.

The figure demonstrates that LAPD removes 98.38% of false
positive blobs on average across the objects. The plasticbag and
normalpaper objects have a 100% false positive removal rate. This
rate is > 99.9% for the dotpaper and photoframe. Aluminium foil
(alufoil) is challenging; it generates over 70 false positive reflec-
tions per frame, yet LAPD can remove 93.73% of these false positives.
We note that the Max-Size and Squareness Shape Filters remove
20 to 50% of the false positives, forming an essential part of the
filtering pipeline. We also observe that the deep-learning filter is
consistently responsible for removing > 50% of false positives, and
up to 78.68% for the waterbottle. As the deep-learning filter has
not trained on any of these objects, this suggests that it is sufficiently
generalizable to remove false positives in varying conditions.

4.5 Analysis of Energy Usage
Figure 19 illustrates the current drawn by LAPD and its sub-
components while operating. We calculate the current drawn when:
the phone is idle with the screen on (idle), the RGB camera is
turned on (camera), ARCore processing of the RGB feed is turned
on (arcore), LAPD and the ToF sensor are active (LAPD (base)),
LAPD is processing false positives without deep-learning (LAPD
(no DL)), and LAPD is operating its full pipeline (LAPD). We com-
pute these statistics from 15 to 30-minute battery consumption
traces using Android Battery Historian [30] on a Samsung S20+.
We observe that the RGB camera feed contributes to around 40%
of the overall current draw (741 mA) of LAPD, whereas the ToF
sensor accounts only for 187 mA. The deep-learning filter requires
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twice as much current as the ToF sensor (378mA) when processing
false positive reflections. Further techniques to optimize the model
for mobile use such as quantization and pruning are likely to re-
duce this further. However, LAPD can currently run on a Samsung
S20+ with a 4500 mAh battery for 4500

1823 ≈ 2.47 hours. This allows
approximately 150 objects to be scanned at 1 minute per scan.

5 DISCUSSION
We discuss the deployment considerations for LAPD and limitations.

5.1 Deployment Considerations
Crowdsourcing LAPD. To improve LAPD’s performance, we envi-
sion crowdsourcing to engage multiple users. This could be realized
using multi-user augmented reality (AR) features [8, 29], where
users share information across AR sessions. These features could
also enable progressive refinement of hidden camera locations over
time, allowing authorities to intervene at hidden camera “hot spots”.
Automating LAPD. We envision that LAPD could be deployed on
increasingly common robotic platforms, which could automatically
scan for hidden cameras during their scheduled tasks. For instance,
cleaning robots in hotels [10, 52, 79] could scan for hidden cameras
in guests’ rooms as part of their daily routine.
Smartphone’s Flashlight and RGB Cameras. We envision ex-
tending LAPD to also use flashlights on smartphones to induce
visible-light retro-reflections and capture themwith the smartphone
RGB camera. Our preliminary experiments indicate that we may be
able to fuse both types of retro-reflections for increased accuracy.
Latency.Although LAPD operates at a constant 30 fps on the smart-
phones tested, these are typically high-end flagship smartphones as
ToF sensors are an emerging technology. Further latency analysis of
LAPD’s processing pipeline could confirm its suitability for future
inexpensive smartphones containing ToF sensors.
Complementing WiFi-based Solutions. Many existing works
propose to detect the presence of hidden cameras by analyzing
wireless traffic, but are unable to localize them [15, 16, 44, 48, 57,
78, 91, 92]. LAPD could rely on these techniques to initially identify
suspicious regions and then localize the hidden cameras.

5.2 Limitations
Availability of ToF Sensors. While many smartphones contain
ToF sensors [38, 77, 86], they are not yet universal. However, ToF
sensors on smartphones are already used for diverse applications
including authentication, camera effects, and augmented reality [19,
23, 42, 77, 86]. The ToF market is projected to grow significantly in
the next five years [63], with ToF sensors expected to be ubiquitous.
Inaccurate 3D Localization. The accuracy of LAPD’s FoV Filter
and Decision-MakingModule depends on the accuracy of the under-
lying 3D localization system. For instance, errors in 3D localization
could affect the 20° FoV filter calculation, resulting in a false positive.
The expected improvement of smartphone-based 3D localization
systems would inherently further improve LAPD’s accuracy.
Per-Object Scan Duration. LAPD requires users to scan only one
object at a time, as current ToF sensor limitations cause objects
of different reflectivities to have distinct ideal scan distances (see
Section 3.5). This leads to a moderately lengthy scan duration when
multiple objects are inspected. However, as ToF sensors become
increasingly sensitive, LAPD can be improved to scan larger areas

with increased accuracy, as retro-reflections could be detected from
further away at a higher resolution.
Hidden Camera Placement. LAPD’s current scan pattern ap-
proximates all camera housings as flat planes where any hidden
cameras face the user. However, we could infer the shape of camera
housings to generate accurate scan patterns, as ToF sensors can
create accurate 3D models of nearby objects [11, 70].

6 RELATEDWORK
We now present related work on hidden camera detection.
WiFi-based Solutions. Multiple prior works propose to detect
the hidden cameras by correlating their wireless traffic patterns
with nearby human activities or changes in environmental condi-
tions [15, 16, 44, 48, 57, 78, 91, 92]. Additionally, mmWave sensing
may also be used to detect electronic devices transmitting radio
frequency (RF) signals [49]. While these techniques are promising,
they have significant limitations as they (1) require the hidden cam-
eras to transmit data wirelessly – while a significant number of
hidden cameras passively record to a local memory card (e.g., a
MicroSD Card) – and are (2) unable to localize them.
Camera Detection using Retro-reflections. Another body of
research utilizes pulsed laser beams to detect retro-reflections from
electronic devices, with image processing techniques to remove
background noise [34, 47, 71, 73, 76, 83, 96]. Several recent works
use high-precision laser arrays to recognize unique patterns of
retro-reflection from hidden cameras, and use machine learning to
differentiate them from other reflections [54–56]. These methods
require expensive laboratory equipment or specific devices with
high-precision sensors which are unavailable to the general public.
In contrast, LAPD only utilizes a commodity smartphone to detect
hidden cameras in real-world scenarios.
Depth-based Sensing. ToF sensors, such as those used in LAPD,
are primarily used to determine distance (or depth) information.
Generally, depth sensors present numerous novel sensing op-
portunities, such as depth-based object detection [58, 62, 84],
pose/gesture/action recognition [40, 43, 50, 88], and RGB-depth-
fused environment mapping [14, 24, 35, 36].

7 CONCLUSION
We propose LAPD, a novel hidden spy camera detection system
utilizing time-of-flight (ToF) sensors on commodity smartphones.
We design and implement LAPD as a smartphone app that emits
laser pulses from the ToF sensor to automatically detect and localize
hidden cameras in real-time by identifying unique high-intensity
reflections from hidden camera lenses. To evaluate its feasibility,
we conduct a set of comprehensive real-world experiments under
varying conditions. Specifically, we recruit 379 participants and
compare the results with baselines, including the state-of-the-art
hidden camera detectors and the naked eye. We observe that LAPD
achieves an 88.9% hidden camera detection rate, while the naked
eye experiment yields only a 46.0% hidden camera detection rate.
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